Sign In | Join Free | My hardware-wholesale.com
China Guangzhou Zoli Technology Co.,Ltd. logo
Guangzhou Zoli Technology Co.,Ltd.
Guangzhou Zoli Technology Co.,Ltd.
Verified Supplier

1 Years

Home > Aluminum Metal Powder >

AlSi10Mg Aluminium Alloys In Additive Manufacturing And Laser Powder Bed Fusion Processes

Guangzhou Zoli Technology Co.,Ltd.
Trust Seal
Verified Supplier
Credit Check
Supplier Assessment
Contact Now

AlSi10Mg Aluminium Alloys In Additive Manufacturing And Laser Powder Bed Fusion Processes

Brand Name : Zoli

Model Number : AlSi10Mg

Certification : ISO CE

Place of Origin : China

MOQ : 1kg

Payment Terms : L/C,T/T,Western Union

Supply Ability : 500ton per year

Delivery Time : within 30days

Packaging Details : vacuum,plastic and iron barrel

Cas Number : 7429-90-5

Surface Finish : Smooth

Applications : Additive for metal alloys, rocket fuel, fireworks, thermite reactions, etc.

Sintering Temperature : Depends on the specific metal alloy used

Feature : Sliver white powder

Purity : 99.7%

Sintering Atmosphere : Nitrogen or Hydrogen

Color : Silver

Melting Point : 660.3°C

Standard : GB/T 2085-2007

Specific Surface Area : 1-3 m2/g

Material : Aluminum

Hazard Class : Non-hazardous

Powder Application : 3D printing

Manufacturer : Guangzhou Zoli

Contact Now

Detailed Description: AlSi10Mg Powder for Metal 3D Printing

AlSi10Mg is one of the most widely used and well-understood aluminium alloys in additive manufacturing (AM), particularly in Laser Powder Bed Fusion (L-PBF) processes.

1. Chemical Composition

The name "AlSi10Mg" directly describes its primary alloying elements:

  • Al (Aluminium): Base metal (approximately 90%).
  • Si (Silicon): ~9-11%. Silicon lowers the melting point, reduces shrinkage during solidification, improves fluidity, and enhances castability and weldability. It also contributes to strength.
  • Mg (Magnesium): ~0.2-0.45%. Magnesium enables precipitation hardening through the formation of Mg₂Si phases during heat treatment, significantly increasing the material's strength.

A typical composition table looks like this:

ElementWeight %Function
Al (Aluminium)BalanceBase metal, provides low density and good corrosion resistance.
Si (Silicon)9.0 - 11.0 %Improves fluidity, reduces melting point, enhances castability.
Mg (Magnesium)0.2 - 0.45 %Enables age hardening (strengthening).
Fe (Iron)≤ 0.55 %Impurity, but helps prevent sticking to die casts. Kept low to avoid brittle phases.
Mn (Manganese)≤ 0.45 %Counteracts the negative effects of iron.
Cu (Copper)≤ 0.05 %Impurity, kept very low to avoid negative impact on corrosion resistance.
Zn (Zinc)≤ 0.10 %Impurity.
Ti (Titanium)≤ 0.15 %Grain refiner.
Others (each)≤ 0.05 %-
Others (total)≤ 0.15 %-

Critical Impurity: Oxygen Content
For AM powders, the oxygen content is a crucial specification not listed in standard composition tables. High-quality powder will have an oxygen content < 200 ppm (parts per million). Low oxygen is vital to prevent the formation of oxides, which can create defects, reduce mechanical properties, and cause issues during printing.

2. Manufacturing Process: Gas Atomization

AlSi10Mg powder for AM is almost exclusively produced via Gas Atomization:

  • Melting: The raw AlSi10Mg alloy is melted in a induction furnace under a controlled atmosphere.
  • Atomization: The molten metal is poured through a tundish (a funnel) where a high-pressure stream of inert gas (usually Nitrogen or Argon) breaks the liquid stream into fine droplets.
  • Solidification: These droplets cool and solidify into spherical particles as they fall in the atomization tower.
  • Sieving and Classification: The powder is then sieved to achieve a specific Particle Size Distribution (PSD), crucial for 3D printing.

Key Powder Characteristics:

  • Morphology: Perfectly spherical particles are ideal. This ensures excellent flowability, which is critical for spreading thin, uniform layers in the powder bed.
  • Particle Size Distribution (PSD): The most common PSD for L-PBF is 15-45 μm or 20-63 μm. A tight distribution ensures consistent packing density and smooth recoating.
  • Satellites: Small particles that are welded to larger ones. High-quality powder has minimal satellites, as they can hinder flowability.
3. Material Properties (After Printing - L-PBF Process)

The L-PBF process creates a unique, fine microstructure that differs from traditionally cast AlSi10Mg.

As-Built (Directly after printing):

  • High Strength & Hardness: The rapid cooling (quenching) creates a super-saturated solution and a very fine cellular microstructure surrounded by a silicon network. This results in higher tensile strength and hardness compared to casting.
  • Relatively Low Ductility: The as-built material can be brittle.

After Heat Treatment (T6 - Solution Heat Treated and Aged):

  • Improved Ductility: Strength decreases slightly, but elongation at break increases significantly, making the part tougher and less brittle.
  • Stress Relief: Removes residual stresses from the rapid heating and cooling of the printing process.

Typical Mechanical Properties (L-PBF, Vertical Orientation):

PropertyAs-BuiltAfter T6 Heat TreatmentCast Equivalent (A360)
Tensile Strength350 - 450 MPa250 - 350 MPa~315 MPa
Yield Strength (0.2%)200 - 250 MPa150 - 230 MPa~165 MPa
Elongation at Break3 - 8 %6 - 12 %~4%
Hardness (HBW)115 - 135100 - 120~75

Other Properties:

  • Density: ~2.67 g/cm³ (The printed part is typically >99.5% dense)
  • Thermal Conductivity: ~120 - 150 W/m·K (good for heat exchangers)
  • Melting Point: ~570°C - 600°C (approx.)
4. Applications

AlSi10Mg is the go-to material for lightweight, functional components across industries:

  • Aerospace: Brackets, mounts, ducting, cabin components, satellite parts.
  • Automotive: Lightweight brackets, engine components (e.g., turbocharger housings), heat exchangers, and custom parts for motorsports.
  • Industrial: Robotic arms, end-effectors, jigs, fixtures, and tooling.
  • Thermal Management: Heat sinks and complex, optimized heat exchangers that are impossible to make traditionally.

Product Tags:

AlSi10Mg aluminum alloy powder

      

laser powder bed fusion material

      

additive manufacturing aluminum powder

      
China AlSi10Mg Aluminium Alloys In Additive Manufacturing And Laser Powder Bed Fusion Processes wholesale

AlSi10Mg Aluminium Alloys In Additive Manufacturing And Laser Powder Bed Fusion Processes Images

Inquiry Cart 0
Send your message to this supplier
 
*From:
*To: Guangzhou Zoli Technology Co.,Ltd.
*Subject:
*Message:
Characters Remaining: (0/3000)